すこし補足しておくと、ChatGPT-4を例にとれば、各単語は768次元のベクトルで表現されるが、単語と単語間の類似性を定量化するために、ベクトルの内積、コサイン類似度といった手法が使われる。ディープラーニングにおいては各層のニューロンの出力を次の層に伝播させることがひたすら続けられるわけだが、その際に行列の積が頻繁に必要となる。
ニューラルネットワークで使われる行列の規模は、行数は768行、列数はバッチサイズ(一度に処理するデータの数)やシーケンス長(処理する単語、トークンの数)によって変わってくるが、前者は小さいモデルで数十から数百、大きなモデルでは数十万までの範囲で変動し、後者は数十から数千の範囲で変動する。行列の規模がこれだけ大きければその積には大量のメモリが必要であり、計算量も莫大であることがイメージできる。
論文の筆者はほとんどが中国系の名前
もう一度、論文の話に戻すと、ニューラルネットのパラメーターとして、1.58ビット(-1、0、1の3つの数字)が広く一般に使われるようになれば、エヌビディア以外の半導体メーカーにもビッグチャンスが生まれるということだ。
米中間のAI開発競争の行方を予想する上で、この論文には重要な含意がある。すなわち、これらの論文の筆者名はほとんどが中国系の名前であるという点だ。米国の一流大学に大量に存在する中国人留学生集団の中から突出して優秀な人材が育ち、そうした学生たちが核となり、米中双方の大学、研究機関に散らばりながら、複雑に絡み合う研究者間のネットワークを形成し、米中の協力関係を成り立たせているのではなかろうか。
米国の科学技術が発展した要因として、能力が高く、向上心の強い若者たちを国籍にとらわれず、自由に受け入れてきたことが大前提として挙げられる。もし、政府がそれを否定すれば科学技術における米国の絶対的な優位性は途端に揺らいでしまうだろう。
バイデン政権はエヌビディアに対して中国企業に対する最新GPUの輸出を禁じているが、これは中国企業に対して1.58ビットの利用、大規模言語モデル用の半導体製造を促すことになりはしないか。米中デカップリングは簡単ではない。
文■田代尚機(たしろ・なおき):1958年生まれ。大和総研で北京駐在アナリストとして活躍後、内藤証券中国部長に。現在は中国株ビジネスのコンサルティングなどを行うフリーランスとして活動。ブログ「中国株なら俺に聞け!!」も発信中。